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An expression for the zero-field magnetic susceptibility arising from electrons in a simple Bloch band is de­
rived. Uncoupled field-dependent bands developed earlier are employed in the derivation. The expression 
thus obtained is amenable to very simple physical interpretation. Namely, it consists of three terms: the 
Landau-Peierls term, crystalline paramagnetism, and induced diamagnetism. Reduction of this result to 
parameters defined for field-free bands shows the equivalence of this result to those derived by earlier 
workers. 

1. INTRODUCTION 

THE zero-field magnetic susceptibility arising from 
electrons in Bloch bands has been computed 

repeatedly in the past.1-6 There is little difficulty of 
principle in its calculation. What is required is an 
expression for the fermion partition function 

€F CV/5) E<ln{l+expC-/3(£,~i7)]} (1) 

for the electrons under consideration. The expression 
must be in powers of H and good to square terms. The 
susceptibility x then results from this expression by the 
operation 

X = Hm-(l/Q)(d2$/dH2). 
H=0 

(2) 

The definition of X thus seems to presuppose that JF 
can be expanded in powers of H. In a strict sense this 
is almost certainly not true. But expansion is usually 
possible in a formal or asymptotic sense if some side 
effects are neglected. The resulting expression for x is 
then likely to have approximate validity. 

Thus, computation of (2) looks like a fairly straight­
forward job involving second-order perturbation theory. 
The reason why the problem nevertheless still retains 
the attention of physicists is that this apparently 
simple computation leads to an extremely long and 
involved result. To complicate matters still further, 
this result can be put in many apparently different, 
but actually equivalent, forms. 

In the following we approach this old problem with 
the help of a new formalism. Wannier and Fredkin7,8 

have shown that the action of the magnetic field upon a 
band can be resolved into two effects. One effect 
gradually transforms the parameters (wave functions, 

* This work was supported by the U. S. Office of Naval Research. 
1 R . Peierls, Z. Physik 80, 763 (1933). 
2 E. N. Adams, Phys. Rev. 89, 633 (1953). 
3 J. E. Hebborn and E. H. Sondheimer, Phys. Chem. Solids 13, 

105 (1960). Hereafter referred to as HS. 
4 C. P. Enz, Helv. Phys. Acta 33, 89 (1960). 
5 L. M. Roth, Phys. Chem. Solids 23, 433 (1962). 
6 E . I. Blount, Phys. Rev. 126, 1636 (1962). 
7 G. H. Wannier and D. R. Fredkin, Phys. Rev. 125, 1910 

(1962). In the following quoted as I. Equation (15) of that paper 
is quoted as (1,15). 

8 G. H. Wannier, Rev. Mod. Phys. 34, 645 (1962). 

energies, etc.) of that band. The other effect consists 
in the breaking up of the band into a series of discrete 
states. References 7 and 8 show that the second effect 
is described fully by the formalism first postulated 
by Onsager,9 provided the first effect is not ignored. 
The bands thereby become renormalized or field-
dependent. We believe that these renormalized bands 
provide a great computational advantage in many 
problems, and we are recomputing the magnetic sus­
ceptibility to show up the resultant simplifications in 
this particular instance. 

The core of the new derivation occupies Sec. 2, and 
the result at the end of that section is actually terminal 
from the point of view of the new formalism. The 
susceptibility arising from electrons in a band consists 
of just three terms if the band is simple and the elec­
trons may be assumed spinless. The terms refer to 
conceptually very simple quantities characteristic of 
the band. In Sec. 3 the result is analyzed. The physical 
significance and structure of the three terms is worked 
out. They are given in tensorial form and in terms of 
quantities defined for the field-free band. Calculations 
incidental to this task are omitted; they are available 
elsewhere.10 

An Appendix is added which shows the equivalence 
of our result with that of Hebborn and Sondheimer.3 

2. DERIVATION OF THE SUSCEPTIBILITY 

The starting point of the derivation is preferably 
Eq. (14) Ref. 7, or Eq. (53), Ref. 8, which reads 

5C^g(x;9) = Eexp[^H.9X 9
, > g (^ - -9 / M^(x;9 / ) . (3) 

5C is a one-electron Hamiltonian containing a magnetic 
field; Aq(x;g) are Wannier functions associated with 
the band q, modified by a Peierls phase factor; wq(o) 
is the pth Fourier component of the energy-band 
function Wq(k). Both wq and Aq are field-dependent 
over and beyond the Peierls phase factor. The reason 
is that these quantities have undergone renormalization 

9 L. Onsager, Phil. Mag. 43, 1006 (1952). 
10 G. H. Wannier and U. N. Upadhyaya, Contract NONR 

2771(05) Technical Report No. 3 (unpublished). Copies of the 
report are available at the Physics Department, University of 
Oregon, Eugene, Oregon. 
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as functions of the field so as to make the Hamiltonian 
free of coupling terms. Finally, there is in Eq. (3) the 
exponential factor containing the field. Although the 
exponent of this term is extremely small (of the order 
10~5), it produces the change in the energy spectrum 
from the band type to the level type. Without it, the 
matrix problem (3) would be cyclic; with it, the problem 
is of the Onsager type. We can see this easily by some 
slight reasoning on (3). First, change the summation 
index 

WAq(x; p) = E wq(g') e x p C - J i H - p X p ' ^ C x ; Q-Q'). 
?' 

The argument of Aq on the right now appears as a 
shift expressible by a symbolic exponential of exponent 
— p'-d/dp. This exponent commutes with the exponent 
already present so that the exponentials can be simply 
united. This yields 

3&4g(x;p) 

= E w , ( p ' ) e x p i(i p I x p Y p ' L f l ( x ; p ' ) . (4) 
P' L \ dp / J 

The expression in the square bracket is an operator 
function of the vector operator K represented by the 
round bracket. This vector obeys the commutation 
rule (1,19) with reversed sign. This sign reversal simply 
arises because we operate here on the wave functions 
themselves, while (1,19) refers to operation on a 
supposed multiplier function, 

Calculation of the magnetic susceptibility is a 
statistical problem which involves the computation of 
traces of powers and more complicated functions of 
the Hamiltonian. For this purpose, linear independence 
of the functions Aq(x; p) is essential. I t is a not an 
entirely trivial requirement. Functions like Aq(x; p) 
can be constructed using the states belonging to a 
single energy level only; if this is done, a one-dimension-
ally infinite set results with the remainder being linear 
functions of that set. To have the functions Aq(x; p) 
linearly independent, they must be formed from a full 
band. A priori construction of such a band at finite 
field is still somewhat of a problem. Fortunately, the 
present task is one which must be handled in powers of 
the field anyway and in this context a full band poses 
no difficulties. 

To evaluate our traces, we use the inversion of the 
Fourier series (1,7) for Wq(1s), writing the integral in 
the discrete notation for convenience 

Karman volume, and the summation over k goes over 
N equidistant points in the first Brillouin zone. We 
then get immediately from (3) 

Tr(X) = E coefficient of Aq(x; p) on the right of (3) 
p 

=E»,(0)=%(0) 
p 

or with (5) 

Tr(3C) = i ; W 9 ( k ) . (6) 
k 

Now we iterate (3) once and get 

X*Aq(x; p)= £ expBiH- (p x p ' + p ' x p")] 
p'\p" 

Xwq(g-g')wq(g'-g")Aq(x; g"). (7) 

Again, we get the trace of 3C2 by collecting coefficients 
of Aq(x; g) on the right. This yields 

Tr(3C?) = £ wq(g~g')wQ(g'-g) = NZwa(g)wq(-g) 
P,p' P 

= - E expp(k-kO-p]^(k)T^(kO. 

Finally, because the summation over p yields 7V5k,k', 
we get 

Tr(5C2) = E [ ^ ( k ) ] 2 . (8) 
k 

The first nontrivial calculation arises for the trace 
of 3C3. Proceeding as previously, we get 

Tr(3<?) = E expBfH. (p x p ' + p ' x p " + p " x p)] 
p,pf,p'r 

Xwq(g- p ' ) ^ ( p ' - Q")wq(g"- p) . 

We simplify the expression by the substitutions 

p' = r ' + p , 

p —r -j-p. 

wq(9)=(l/N) E Wq(k) e x p ( - ; k . p ) . (5) 

Here N is the number of primitive cells in the Born-von 

This transformation makes p drop out of the equation 
and yields 

Tr(3Q?) = N E e x p [ ( i i H - r ' x r " ) ] 
r ' , r " 

X w f l ( - r , K ( r / - r / , K ( r , / ) . 

Complete evaluation of this expression is not needed 
in this context. We want the result only to square 
terms in H. Using (5) at the same time, we write the 
expression in the form 

T r ( X 3 ) ^ ( l / A 2 ) E E [_\+¥H{rx'ry"-ry'rx")-W{rJry 
k . k ' . k " r ' . r " 

-r,Wy+0(EP)2 

Xei[r '.(k-k')+r"-(k'-k")]TFa(k)PF<i(k')W i '(i(k"). 
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Here H is taken to be along the z axis of a rectangular x, y, z coordinate system. The next step is to interpret the 
multipliers x' and r" as derivatives of the exponential with respect to k and k" and to integrate by parts on those 
two variables. The integrated-out parts vanish because all terms are periodic in reciprocal space. We get, therefore, 

Tr(oe 8 )=— E E e x p C r , - ( k - k / ) + r " . ( k ' - k / ' ) ] 
^ 2 k , k ' , k " r ' , r " 

X 
r i / s2 d2 \ i / 

L 2 \dkXdky" dkydky"/ 8 \dkj 

a4 d4 

; (JRy O R x ORy 0RxCfRyORX 

W2(k)Wq(k')Wq(k"). 

Summation over r' and r" is now possible and yields TPSbx^w- Thus all k vectors come out to be equal. This 
result also annuls the linear term in H which contains now a cross product of a vector with itself. We are left with 
the constant and quadratic term which equal 

rd2WqdWq /d'Wq\ 
Tr(3<?) = £ LWq(k)J-iH2Z Wq(k)\ ) 

k k Ldk2 dk2 \dkxdkj 
O R x ORy 

+0(fl»). (9) 

The trace of 3C3 is typical of the general case. Employing essentially the same procedure, we find for the trace 
of the n'th. power 

1 I 
Tr(3C") = E P ^ ( k ) ] n n{n-\)H2j:[W{k)~]»~2\ 

k 24 k I 

'dW.dW / d2W \2 

• (JK x \J Kni \dkxdkv/ 
+0(fl»). (10) 

Having found the trace of any power of 3C, we can find the trace of any function of 3C by McLaurin's theorem 

Tr[F(5e) ]= E —F<»>(0) Tr(Xw) ; 
n=0 n I 

and thus with (10) 

1 d2F[_W{k)~] 
Tr[F(3C)]= E F[W(k) ] H 2 E 

k 24 k dW2 

•d2Wd2W / d2W \2 

.dkx
2 dk 

W / <̂ W \ I 

y2 \dkxdkyj J 
+0(#3). (11) 

Since the calculation given here is purely orbital, we must add an extra factor 2 for spin when applying (11) to 
(1). We find then 

1 df(W-r)) 
F= - (2/0) E ln(l+e-<W-">) H2 E 

k 12 k dW 

dWdW / d2W 

. (J K X \J Ky \dkxdkvJ 
+0{lP), (12) 

where / ( £ ) is the Fermi distribution function 

f(E)= 1/(^+1). (13) 

To get the susceptibility, we must isolate the term in (12) which is quadratic in H, treating rj as constant. This 
is immediately done for the second term which has an explicit factor H2. In that term we simply replace the field 
dependent W by its field-independent limit. In the first term, on the other hand, we must insert 

W(k) = W^(k)+HW^(k)+HW^(k) (14) 

and expand in powers of H. We find 

F=-(2/0) E l n [ l + e x p - ^ ( T F W ( k ) - 7 7 ) ] + 2 i ? E W<U(k)f(W«»-ri) 

+2H2T,WW(k)f(W^~r))+±[WV(k)J-
k dw«» 

df(W^-rj) 1 rdW^dW^ fd2W^\2ylf{W^-ri) 
> - % • 

24L dkx
2 dk2 \dkxdkvJ J dW«» 

Finally, Eq. (2) yields for the susceptibility 

?[ x= — E w<»(k)f+i(wv)* 
df i<d2w«»d2w«» /dw<°\2i df 

12 k L - - - • dww 241 dkx
2 dk2 \dkxdkj IdW^J 

/d2W^WA 

\dkxdky/ 

-• (15) 

(16a) 

file:///dkxdkyj
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or, in the form of an integral over the first Brillouin zone, and with dimensions restored, 

x= ldk\ 
2TT3 

W^(k)f(W (0). 
df(W«»-ri) 1 e2 [dW^dW^ /d2W^\2\df{W^~ri)-

-v)+i(W^(k))2~ : - - ( - ) - — 
• \dkxdky/ J dW«» J 

(16b) 
dW«» 24 h2 A dk2 dk2 

Formula (16) has already been published as Eq. (101) 
of Ref. 5. The derivation given there is, however, very 
much more involved than the one presented here. 

3. DISCUSSION 

I t is our belief that the three terms in Eq. (16) repre­
sent physically distinguishable contributions to the 
susceptibility. This belief is supported by the fact, 
proved in Ref. 10, that all three terms are separately 
gauge invariant. A proof is also found there that the 
third term and the sum of the first two terms are 
independent of the phase employed for the unperturbed 
Bloch functions. This seems to speak against the idea 
that the first two terms have separate physical meaning. 
However, we feel that a result need not be phase 
independent to be physically meaningful. The work of 
Gibson11 and Kohn12 has shown that there is a natural 
phase for Bloch functions. In this phase, the correspond­
ing Wannier function is exponentially convergent in 
space, and the lattice vector operator13 is most closely 
related to true position. We shall work with this natural 
phase in later parts of this paper. 

Among the three terms the third is the most easily 
understood. I t represents the so-called Landau-Peierls 
diamagnetism. The Landau-Peierls susceptibility reads, 
with the dimensions restored, 

^ L P - - dk\-
4 8 T T 3 # W Ldkx

2 dk2 \dkxdkvJ 

df(W°-V) 

dW° 

or, in tensor form, 

1 
X L P " * = -

96TT 3 h2c2, 
(IK €Va$€\l.<TT 

(17) 

dW° dW° df{Wa—rj) 

dkadka dkffdkT dW° 
(18) 

where evap is the totally antisymmetric unit tensor. 
The Landau-Peierls susceptibility is a gauge- and 
phase-invariant contribution. I t is the only term present 
if the electrons are free. Our computation clearly 
separates it from all other terms in the susceptibility 
as arising from the breakup of the band continuum 
into discrete states. We must therefore anticipate that 
the De Haas-van Alphen effect will primarily arise 
because the derivation of Sec. 2 has to be modified 
for finite magnetic field. I t is quite likely that such a 

11 J. B. Gibson, Bull. Am. Phys. Soc. 3, 146 (1958). 
12 W. Kohn, Phys. Rev. 115, 809 (1959). 
13 G. H. Wannier, Phys. Rev. 117, 432 (1960). 

modification will make little or no difference in the 
first two terms of Eq. (16). 

The second term in (16) is always positive and 
associated with the square of Wa)(k). I t is seen from 
(14) that Wa) enters into the energy like a magnetic 
moment. The term in (16) which it gives rise to is the 
paramagnetic susceptibility due to that moment; 
indeed it has the usual paramagnetic form Njj?/kT. I t 
may at first sight seem strange that the present calcu­
lation gives rise to any paramagnetism at all since we 
assumed neither orbital nor spin degeneracy. However, 
closer examination shows that there is another cause 
for paramagnetism, which is often overlooked, namely 
a crystalline medium with an intrinsic "handedness." 
The paramagnetic term in (16) arises from this handed­
ness. We shall show this by proving that Wa) vanishes 
in a crystal having inversion symmetry. We shall also 
make it plausible that this "crystalline paramagnetism" 
is a physically identifiable phenomenon by proving 
that FF(1)(k) is real and odd in k, as one would expect 
from its interpretation as a magnetic moment. These 
features are not entirely trivial; for W(1)(k) is after 
all, not directly a physical entity, but only an inter­
mediary in operational calculations. 

In terms of quantities defined for the field-free 
band, W(1) turns out to be10 

/ dWqW\ 
wqvQL)=h<q\[P*+ )Y-

dkx 

dWq™ 

dkv 

)x\q). 

(19) 

Here, q is the band index, X and Y the Adams oper-
tors.14,15 Their definition is given in Eq. (29) below. 
Equation (14) shows Wq

a) to be the co-factor of H in 
an invariant. I t is therefore an axial vector and can be 
expressed in tensor form. Its components Wv are 

e f m dWq°\ 
W* = e^(q\( pa+ )Xp\q). (20) 

2mc \ h dka / 

Similarly, the contribution of the crystalline para­
magnetism to the susceptibility can_be written in 
tensorial form. We find 

1 e2 

16TT3 m2c 

r / mdWq^\ 
- / dk e.a^s T(q | f pa+— —— )Xp | q) 

df(Wqo-v) 
X(q\ U+-—-)Xr\q) ' o . (21) 

\ h dkv J dWq° 
14 E. N. Adams, J. Chem. Phys. 21, 2013 (1953). 
15 J. N. Luttinger, Phys. Rev. 95, 1154 (1954). 



Z E R O - F I E L D S U S C E P T I B I L I T Y OF B L O C H E L E C T R O N S A 807 

Further analysis of Wq
a) brings in the point dis­

cussed earlier, namely, that there exists a "natural" 
phase for Bloch functions. We are discussing here a 
simple band with a spinless electron. In such a band, 
the states k and — k are linked by time reversal, and 
have among other things equal energy Wq

(0). This 
symmetry can be obscured artificially by the introduc­
tion of a k-dependent phase factor for the wave func­
tion. Physically incomprehensible results for Wq

a) 

could thereby be obtained. In the following we do not 
allow such phase factors. The wave functions of k and 
— k are then linked by the identity 

W>*(x;k) = J . ° (x ; -k) . (22) 

If we apply this to the definition (29) of the Adams 
operators, we get 

(s, -k\X\q, -k>=<fck|X|*,k>, (23a) 

which implies, in particular, that 

Xq(-k) = Xq(k), (23b) 
where we set 

(q\X\q)=Xt. (23c) 

Reduction of (19) to matrix elements of the Adams 
operator is possible by reduction of the operator p. 
The appropriate relation is obtained by differentiating 
the Schrodinger equation just once with respect to k. 
It yields 

(OC- Wq°)Xbq°= -i[$~ (dWq°/dk)2bq° (24a) 

and hence 

(s\p-(dWq
Q/dk)\q)=i(Ws

0-W<?)(s\X\q). (24b) 

Application of (24) to (19) yields 

WqV(k)= (dWq°/dkx)Yq- (dWq°/dky)Xq 

-iZs(Ws«-Wq°){(q\X\s)(s\Y\q) 
-<S|r|*><*|X|g>>. (25) 

It is now relatively easy to reason on Wa). First, we 
have 

Wq™ (k) = Wq™ (k)*= real. (26) 

This is true because all three terms in (25) are real; 
for the third, it follows from the fact that the curly 
bracket is purely imaginary. Second, we see from (25) 
that 

WV°(-k)=-WVi>(k). W 

Again it is true because it applies to each of the three 
terms in (25). In the first two terms the expectation 
values of the Adams operators are even by (23b), and 
the derivatives of the energy are odd. In the third 
term the energies are even, and the curly bracket, by 
(23a), is odd. 

It is not, in general, the purpose of this paper to 
examine the susceptibility in crystals of various types 
of symmetry. However, a very much better understand­

ing of Wq
(1) results if we realize that 

Wq
a) = 0 in a crystal with inversion symmetry. (28) 

This is again most easily checked with the help of 
Eq. (25). If a crystal has inversion symmetry, the wave 
function (22) can be realized in still a third way, 
namely, by taking the wave function of negative 
argument. Since the square of this operation is the 
identity we must have 

W>(-x;k)=d=i.°(x; - k ) . (22a) 

The sign of this relation cannot be generally determined; 
it depends on whether the totally periodic function 
55°(x,0) is even or odd with respect to the inversion 
center. From continuity reasons it follows then that 
the sign is characteristic for the entire band of band 
index s. Now let us investigate first the behavior of the 
diagonal elements Xq under inversion. By definition 
we have 

r duq(x;k) 
Xq=i / W(*(x; k) dr. (29) 

J dkx 

If we apply inversion to the variables of integration 
in this expression, then by (29) and (22) each function 
is replaced by the conjugate complex times ± 1 . It 
follows that the factor for the integral as a whole 
i s + 1 : 

r d%*(x;k) 
Xq=i I uq(x7k) dr, 

J dkx 

or, with an integration by parts 

r duq(x;k) 
Xq= —i / ug*(x; k) dr, 

J dkx 

which means that 
Xfl=0. (30a) 

If the same reasoning is applied to off-diagonal elements 
of the Adams operator we get 

(s\X\q)=^(q\X\s), (30b) 

with the sign typical of the index pair q, s. From this it 
follows that 

(q\X\s)(s\7\q)-(q\Y\s)(s\X\q)=0. (30c) 

The identities (30) render the expression (25) equal to 
zero. 

The first term in (16) deals with the induced moment 
for the electron system, that is, diamagnetism in the 
sense of classical physics. The term contains the Fermi 
distribution function rather than its derivative; in 
other words, all electrons, not only those at the surface 
of the Fermi sea, acquire an induced moment. We 
know from the case of atoms that this moment is 
opposed to the field. When we pass to the case of a 
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band we find this contribution lost in a number of other terms whose sign cannot generally be predicted. 
W{2) can be given a variety of equivalent forms when expressed in terms of parameters of the field-free band. 

The shortest form reads 

wqw=-z 
1 

(s\pxY- X\q) 
2 -j r\ 

{q\XpxY+YpxX\qH 
2dkv 

dWq° d 

GRiy OR/y 
(q\x*\q) 

+K? I **!?>+-
1 dWq° 

2 dkv 

(q\X2\q)+ 
1 dWq° 

8 dk2dk2 

dXq ldWq° d 
+Wd) +_ 

dky 4 dkx dky 
(q\XY+YX\q) 

(q\XY+YX\q). (31) 
ldWq° d 

This form is most directly related to the Landau gauge, but can also be derived from the symmetric gauge, if 
desired.10 The shortest form which is obviously real and symmetric in x and y reads 

1 d 

>*<,W,°-Wqo 

+-—(q\T-
idkx 

(s 

awj>-

2 1 d 

+ 
4dk, 

(p,+—-)Y-(py+—-)x\q) 

\Y+YUX 

{ dW9<\ 
(q\X[py+—-)x\q) 

\ dkv / 

1 d 

dkx * 8 dkv 

dWq^ dWq
0' 

dkx . 
X\q) 

1 d ( 3Wa^ 
--—(q\y(pyi , 
8 dkx \ dkv 

A / dwq»\ 1/ aw A 1/ awA 
-)x+x(py+-~r)Y\q)+-(l )(q\Y

2\q)+-(l — )(q\X*\q) 
y I \ dkv J 8 \ dk2 / 8 \ dk2 ) 

+-
1 d2Wq° 

8 dkxdky 
(q\XY+YX\q)+iWM 

fdXq dYt 

\dkv dk -0- (32) 

The atomic diamagnetism in the Y2 and X2 terms is clearly lost in a welter of other contributions whose nature is 
not clearly understood. I t is possible to show, however, that the expression (32) is even in k.10 This suggests, 
together with the earlier results that, generally, 

Wq(-k, - H ) = J^fl(k,H) = real, (M) 

in agreement with the principle of time reversal. This result is not proved at the present time. Equation (32) is 
also easily put in tensor form. The contribution of induced diamagnetism to the susceptibility comes out to be, 
with dimensions restored, 

2TT3J 
dk /(Wf—Tfievapepar 

X 
r e2 1 

E ... _ 
L4:m2c2s^QWs

0-Wa
0 \ h dk 

:<?!*> 
/ md\Vq\ ( mdWq\ 
pa+ )\s)(s| pff+ 

\ h dka J \ h dkB I 
XAq) 

Smhc2 dk, 
(q I Xe( P«+ )xT+xT( pff+ 

\ h dK J \ h dka I 
Xf>\q) 

h dka I Smc2\ 
S<ra 

h2 dkadk0 

(q\X,XT\q) 

— fdkf(Wq^ri)—W^r—(q\Xv\q). (34) 
2w2J 2hc dkT 

The calculations which lead to (19), (31), and (32) are quite lengthy and have been suppressed in this publi­
cation. The work is available in the form of a report as stated in Ref. 10. 

APPENDIX 

We now show the equivalence of our result with that of Hebborn and Sondheimer (HS). This is most easily 
carried out by deriving our result from their expression. Although the expression for x is gauge-independent, the 
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form for x in Landau gauge is most convenient for the present purpose. The term Xx of HS can be recognized in 
our expression as consisting of Landau-Peierls terms and the contribution to x from the term involving the fourth 
derivative of the energy with respect to components of the wave vector appearing in the expression (31) for 
Wq

(2). The latter, after integration by parts once with respect to x and y components of k, yields the terms in­
volving the third derivative of the energy occurring in Xx. The expression for Wq

(1) in Landau gauge can be 
written as10 

dWq° i d2Wq
Q 

WqU=(q\pxY X \ q ) ~ T 7 - r . (a) 
(J fcy Z* (JfC X\JfCy 

In terms of notation used by HS for Wq, this is given as 

wqv=wq~{dwqydky)xqq. (b) 

Now combining the terms [ - \Xqq\
2(dWq°/dky)

2+2XqqWqdWq
0/dky^ from X2 and the term (Wq)

2 from X4 of HS, 
we obtain the term representing crystalline paramagnetism in our expression (16). Next we consider the terms 
involving off-diagonal matrix elements in X3 of HS, 

; / 

XSQ rm dWJ 

2TT3WCV ^sWs°-Wq
0Lh2 dkx 

Yqs+(q\Ypx-Xpy\s) f(Wq°-v)dk. 
J dkv 

(c) 

To proceed further, we need a second-order sum rule which is obtained with the help of the Hermitian adjoint 
of Eq. (31a) of Ref. 10 by taking matrix elements with respect to bs°y where S9^q, thus obtaining 

(W°-W<>){q\rv-\s) = i(q\ 
I dWq\ ( dWt°\ 

YV*—r)+x\t"—r)'5>-
\ d k X J \ Sky J 

(d) 

Here £*=, r^ are the operators xzLi(d/dkx), ydzi(d/dky), with the sign according to the direction of operation.10 

Utilizing Eq. (d), expression (c) can be written as 

fE
 x" r 

J ^eW8°-Wq°L 2^mc2J <i^Ws°-W 
2{q\Ypx\s)+ 

k2 Sky 
-Xq8+i(q\frr\s)(W.0-Wq°) 

dWq° 

dkv 

•f(JVJ>-tj)dk. (e) 

The summation over S can be easily carried out for the third term in the above expression by adding and sub­
tracting the term with s= q and utilizing the fact that the bqs form a complete set. Thus, we obtain 

2irzmc2, 

Xs 

.^sWs°-Wq° 

dYaa dXaa\-]dW, mdWq° ] fdYqq dXqq\ 

2(q\Ypx\s)+r-—XqA+i(q\trt\q)'iiXj 
h2 dky ) \ 6kX dky / 

dky 
-f(W«-ri)dk. 

(f) 
Combining the terms in the curly bracket in the above expression with the terms involving off diagonal matrix 

elements in X4 of HS yields 

-4kf(wq°-v)j: 
i 

s^Ws°-W0° 
{s\pxY-

mdWq° 

h dky 
X\q) 

(g) 

This term is readily seen to be present in our expression for x as the contribution involving off-diagonal terms 
from Wq®\ 

Finally, all the remaining terms of HS can be written as 

\dWq°df(Wq°-ri) 

^irzmc2, H W dk, 
-(q\x*\q)-(q\XpxY+YpxX\q) 

3kV dWa 

+ 
im fdYqq dXqq\ /dYqq 

\ Xqq[ j + f̂fffl 
l h2 \ dkx dky / \ dkx 

dYqq dXqq\m 

• 2i(q\trTt\ 
dky Jfl2 

dWq
Q 

dky 
•f(WS-v) 

(q\Y*\q)+2Wt \f(Wt0-V)\ (h) 
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Here Wq occurs as defined by HS. The terms in the first curly bracket in the above expression can be combined 
with the other terms by integrating by parts with respect to ky. Thus (h) reduces to the following form: 

r e2 d e2 dWq° d 
- dkf(WJ>-V) -——(q\XpxY+YpxX\q)- — — - —(q\X*\q) 
ZJ Imnc2 dky Wc2, dky dky 

e2 e2 d2W0° e SXQ 

-(q\Y2\q) (q\X2\q) Wq™ . (i) 
2mc2 2h2c2 dky2 he dky 

This is exactly the same expression as the contributions to x from the remaining terms in (31), thus proving the 
equivalence of our result to that of HS. 
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Nuclear Magnetic Resonance Studies of the Metallic Transition in Doped Silicon* 

R. K . SlJNDFORSf AND D . F . HOLCOMB 

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 

(Received 12 June 1964) 

The Si:P and Si:B systems have been studied using the methods of pulse and cw nuclear magnetic reso­
nance. The purpose of this study is to investigate the transition of an impurity system in a solid from an array 
of isolated paramagnetic atoms or clusters of atoms to a superlattice of impurity atoms having strong wave-
function overlap and metallic character. Knight shifts, line shapes, and nuclear spin relaxation times were 
measured for Si29 and B11 in ^-type silicon and Si29 and P31 in ̂ -type silicon. Phosphorus concentrations vary 
from 1017 to 1020 impurities/cm3 and the temperature range investigated extends from 1.4 to 300°K. Onset of 
metallic behavior in n-type silicon at 4X1018 phosphorus impurities/cm3 is indicated by the Si29 T\ becoming 
proportional to T"1 between 1.4 and 4.2°K and by the existence of a Knight shift for Si29. Above a phosphorus 
concentration of approximately 3 X1019 cm""3, Si29 TVs and Knight shifts obey the Korringa relation. Broaden­
ing of the Si29 resonance line by 5 times the dipolar width and of the P31 resonance line by 100 times the di­
polar width at concentrations of 1 AX 1020 cm -3 is shown to be caused by fluctuations of the local Knight shift 
about the average Knight shift value. Such fluctuations are explained by a model of a Poisson distribution 
for the local P31 impurity density with a threshold local density of 3X1019 cm -3 for transition to metallic 
properties. This model agrees with the observed P31 resonance line shape and explains the transition to 
metallic behavior in n-type silicon. In p-type silicon, B11 and Si29 Knight shifts are measured for boron con­
centrations greater than 1X1019 cm-3. The B11 TVs and Knight shifts agree with the Korringa relation within 
a 15% experimental error. However, both the B11 T\ and Knight shift are independent of concentration for 
boron concentrations between 2X1019 cm -3 and 8.5X1019 cm""3. Such concentration independence may be ex­
plained by postulating a clustering of boron atoms at an average local density in a cluster greater than 
8.5 X1019 cm-3. Wave function probability densities are calculated from Knight shifts with a free carrier 
density of states assumed valid. To facilitate comparison, wave-function densities are normalized per unit 
volume of the crystal and are 2600 cm -3 at P31 and 100 cm-3 at Si29 in n-type silicon and 80 cm -3 at Si29 in 
^-type silicon. 

T 
INTRODUCTION of temperature in n- and ^>-type silicon2-6 and ger-

^HIS paper reports the experimental nuclear manium7 '8 show three qualitatively different classes of 
magnetic resonance (NMR) behavior of Si29, P31, behavior as the impurity concentration is varied. In 

and B11 nuclei in the silicon crystal lattice with increas- ^ P e s l l l c o n a t donor-impurity concentrations less 
ing donor- or acceptor-impurity concentration. We are t h a n a b o u t 4 X 1 0 c m > t h e resistivity measurements2'5 

interested in those concentrations of impurities in which m d l c a t e t h a t m o s t o f t h e electrons are bound to the 
low-temperature electric resistivity and Hall-coefficient ^ p u r i t y system at temperatures less than 20°K. We 
measurements indicate a transition from a nonmetal to s h a 1 1 c a l 1 t h l s concentration range the semiconducting 

a metal.1 Graphs of the electrical resistivity as a function 
2 G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949). 
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